
Oriental motor

Procedure for Introducing Custom-Built Robots

- · The Advantages of Custom-Built Robots
- · Case Study of a Custom-Built Robot
- · From Considering Automation to Robot Assembly

The Features of the Robot ControllerMRC01

Contents

1. The Advantages of Custom-Built Robots

P3~

This section discusses the advantages of custom-built robots.

2. Case Study of a Custom-Built Robot for Oriental Motor Production Equipment

P5~

This section discusses a custom-built robot that has been adopted into Oriental Motor equipment.

3. From Considering Automation to Robot Assembly

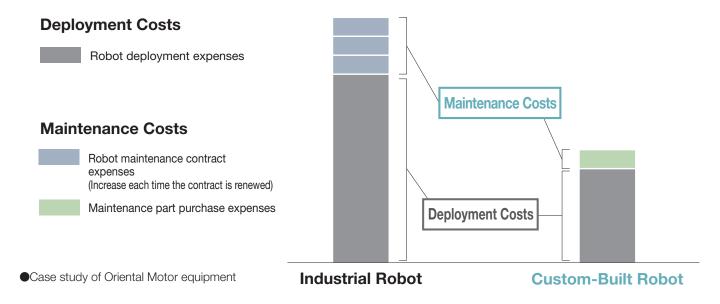
P7~

This section discusses the procedures required for in-house production.

- Confirmation of the movements to be achieved
- Determination of the robot type
- Robot arm design
- Select motor
- Preparation of parts
- Assembly procedure
- Setup
- Operation check

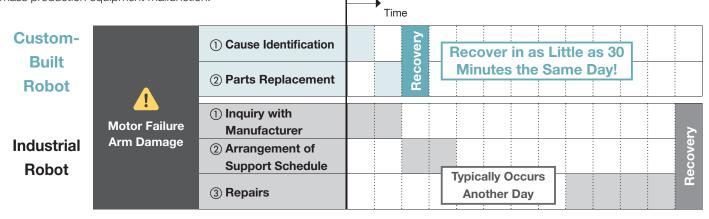
4. The Features of MRC01

P16


This section discusses the robot controller MRCO1, which simplifies multi-axis robot control.

The Advantages of Custom-Built Robots

Reduction of the Total Cost Associated with Introducing a Robot


The initial cost is not the only cost reduced when introducing a robot.

In-house production also reduces the maintenance costs after adoption. This decreases the total cost.

Shortened Time to Recover after Stoppage from Robot Malfunction

The cause of a malfunction can be identified and parts replaced in-house. Having maintenance parts on-hand minimizes the blow from a mass production equipment malfunction.

Case study of Oriental Motor equipment

Maintenance Can Be Handled In-House After Adoption

Cost Reduction and Space Saving Through Maintenance at the Part Level

Even if multiple robots are introduced, the common parts can be maintained altogether

Maintenance-free with the AZ Series

With industrial robots, regular maintenance is recommended. (Batteries are replaced about once a year.)

Have these situations ever happened?

- Management became dependent upon individual efforts and years passed without anything being done
- Planning for maintenance is troublesome
- Location information was lost due to battery replacement

OSTEP AZ Series

- The battery-free sensor eliminates the need for battery replacement
- Large product line of products that don't require greasing

Case Study of a Custom-Built Robot for In-House Production Equipment

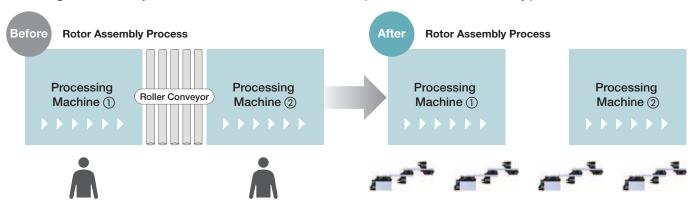
Four horizontally articulated robots were introduced in the assembly process of motor parts. Production capacity more than doubled thanks to the activation of human resources.

Load removal and attachment by hand while moving between equipment

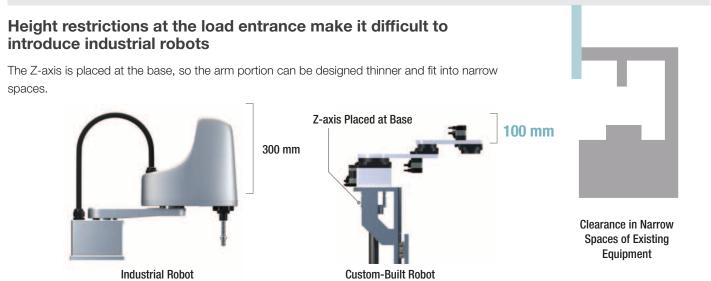
The line configuration was reviewed at the same time

Example of Automation Removing and attaching loads from/to a jig

Gap between shaft and hole: 0.016 mm - 0.054 mm

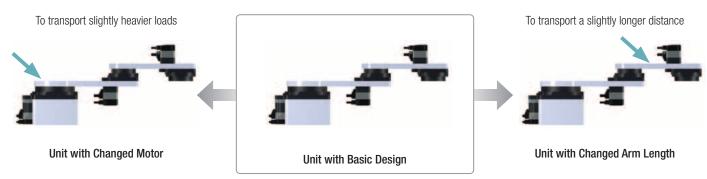


Standardized design and horizontal development of the same units

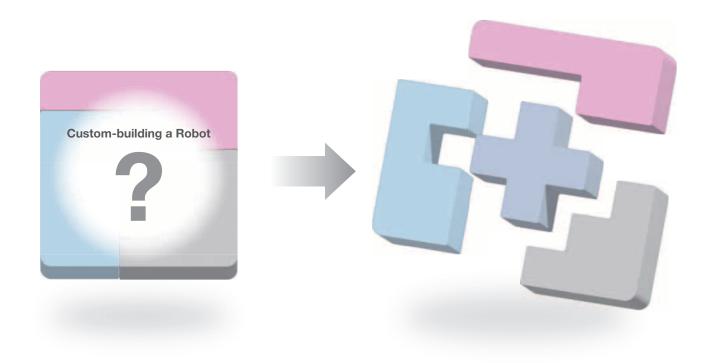

Point 1: Existing Process Equipment Remains in Place

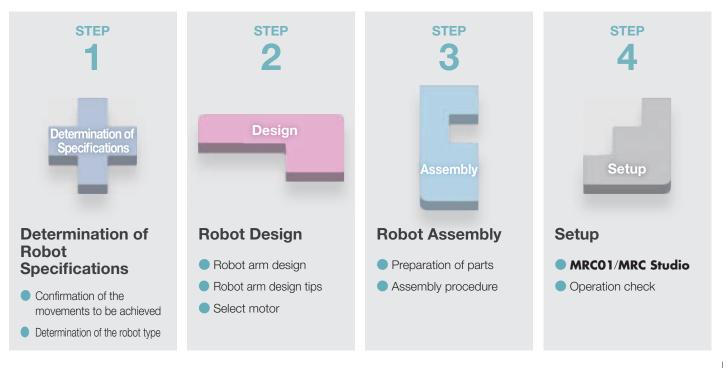
Load removal/attachment work automated

Introducing four horizontally articulated robots reduces the number of personnel in the rotor assembly process from two to zero.


Point 2: Optimal Design for the Equipment

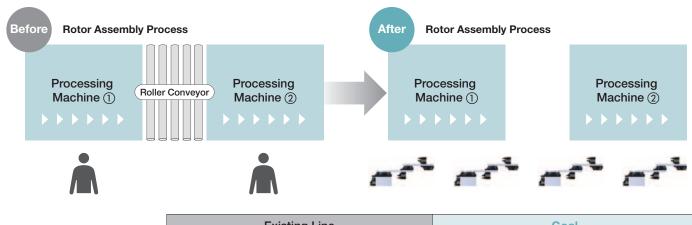
Point 3: Basic Design Can Be Repurposed


Arm length can be customized for each model according to equipment height and transport distance


Since the shape and number of axes are the same, selection calculations are completed only by changing the numerical values.

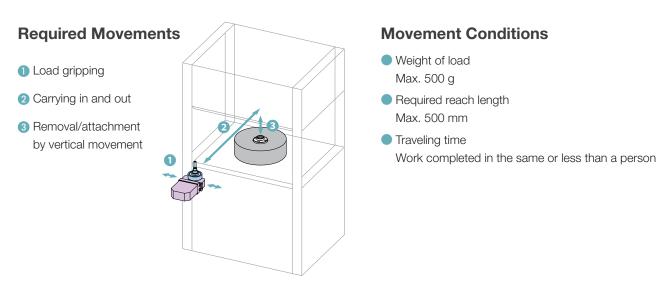
From Considering Automation to Robot Assembly

We will introduce the procedure for custom-building a robot that matches a desired movement, based on actual examples.



Determination of Robot Specifications

Confirmation of the Movements to be Achieved


Purpose of Introducing Robots

Automation of inter-process load transporting, reducing personnel.

	Existing Line	Goal	
Cycle Time	25 seconds/unit	25 seconds/unit	
Workers on Line (Excluding catering)	2 workers	0 workers Personnel Reduced by Two	

Specifications and Requirements for Custom-Built Robots

Determination of the Robot Type

It is important to select the appropriate robot type, taking into account the required movements and any restrictions on the introduction of robots.

MRC01-Compatible Robot Types and Features

	Vertical Articulated Robot			
	X Y	X Y	z v	
Moving Range	Wide	Narrow Compared to a Cartesian robot, the moving range in the Y-axis direction is wider	Narrow	
Installation Area	Narrow		Wide	
Positioning Accuracy	Difficult to achieve accuracy		Easy to achieve accuracy	
Rigidity	Low		High	
Speed	Slow	Fast	Fast	
Size of Loads that can be Handled	Small to large	Small	Small to large	

Points to Consider when Determining the Robot Type

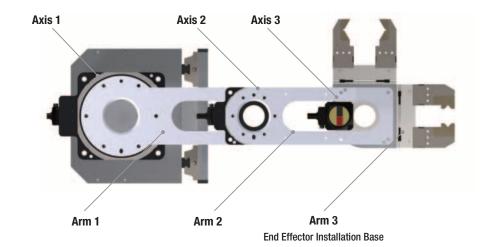
The reasons for introducing horizontally articulated robots for in-house equipment are summarized below.

Selection Requirement	Aim	Vertical Articulation Robot	Horizontal Articulated Robot	Cartesian Robot
Installation Area	Installation in limited space	0	0	Δ
Moving Range	Height restriction at equipment entrance	0	0	0
Movements Required of Robot	Removal & attachment and transportation (no twisting motion required)	Over-performance	0	0

Robot Arm Design

Required time: About 5 days

Robot configuration: 3-axis horizontal articulated robot + elevating axis (base) + end effector


Role of Each Axis

Axes 1 & 2 (shoulder & elbow)

Arm position control

Axis 3 (wrist)

End effector angle control

Total Arm Length

Target is distance from robot installation point to target point + 10%

- Generous length design is required. If the arms are fully extended, the robot cannot be controlled.
- Excessive leeway increases the load on the motor and limits the transportation speed, etc.

Ratio of Length of Each Arm

Arm 1:Arm 2:Arm 3 = 4:3:1 (estimate)

- If Arm 2 is too short relative to Arm 1, there will be a blind spot near the base of the robot.
- Arm 3 is used for end effector angle control. The length must be such that the end effector and Arm 2 do not interfere with each other in the desired angular range of rotation.

Use of the DGII Series Simplifies Arm Design

Installation type: Surface mounting

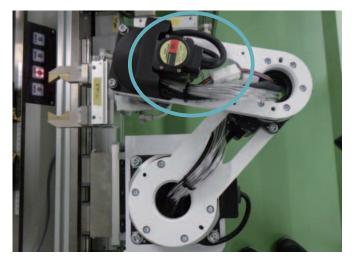
No couplings or other fastening parts needed.

Can be mounted by putting screw holes in the plate.

Robot Arm Design

Arm 2

End Effector Installation Base



- Aluminum alloy (A5052) is used to make the arms lighter
- Holes are also put in the arms for wiring using the hollow bore in the DGII Series

Robot Arm Design Tips

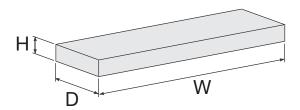
A Little Bit of Ingenuity Leads to a Wired Smart Robot

Lighter & Organized Wiring

- Reduced burden from lighter weight
- Shorter takt time
- Useful for cable wiring

Additional Tapped Holes for Securing Zip Ties

Secure cables that tend to bulge out

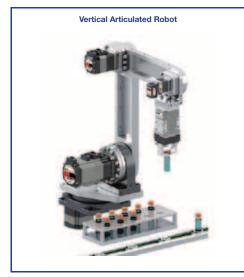

Motor Selection

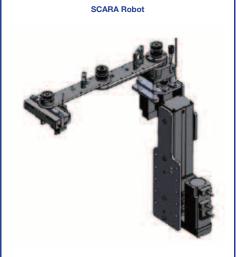
Take Advantage of Oriental Motor's Motor Sizing Tool

Information Needed to Make a

Selection Request

- The width (W), depth (D), height (H) and weight of each arm
- The distance between the shafts of each motor
- The weight of the end effector
- The weight of the loads




These Online Motor Sizing Tools are designed to make sizing a motor faster and easier.

These forms calculate the necessary Torque, Speed, Stopping Accuracy and System Inertia important when selecting a proper motor for the application.

Call our experts for any assistance needed: 1-800-GO-VEXTA (468-3982) (M-F 7:30am CST to 5:00pm PST).

Robot Application

Items to be Considered

- The weight and center of gravity of each part
- The weight of the end effector
- Calculation of the inertia*

*Must be calculated with the maximum load.

For a horizontal articulated robot, the arm is fully extended.

Items to be Confirmed

- Is the permissible torque and permissible load inertia of each axis satisfied?
- Is the amount of displacement from the load inertia within tolerance?

Robot Assembly

Preparation of Parts

i reparation of rare

Robot Body

- Arm
- Motors/Actuators

Controller

- Robot Controller
- Driver

Connection Cables

Robot Body

Controller

Required time: About 2 hours

Stored together in one case

Robot Deployment Expenses (List Price): ~\$7,000 Price on Oriental Motor Website: ~\$6,000

Robot Controller

MRC01

Driver

AZD-KR2D×4

Motors/Actuators

Axis 1: **DGM130R-AZAK**Axes 2 & 3: **DGM85R-AZAK** × 2
Z-axis: **EACM6D20AZMK**

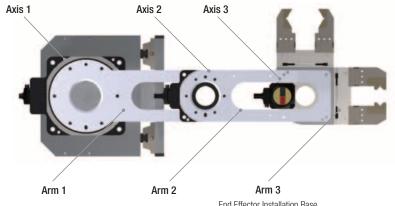
Power Supply Cable/Connection Cables

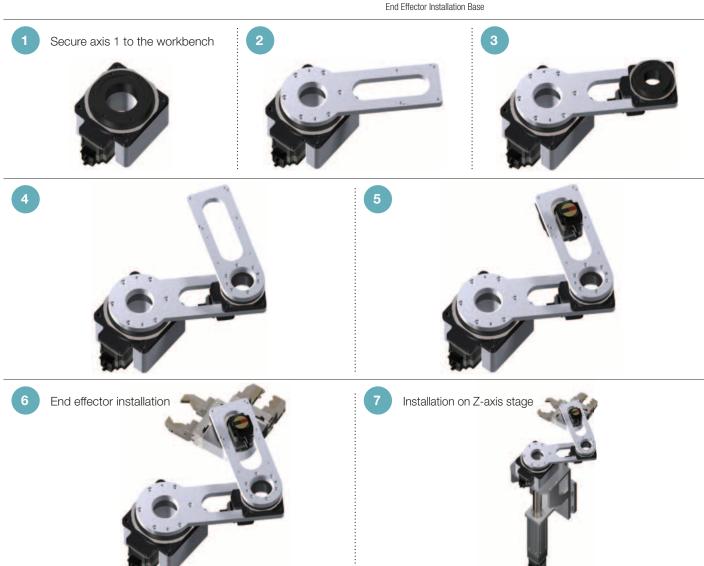
Power Supply Cable
RS-485 Communication Cable
Connection Cable
Flexible Connection Cable
(The quantity of each cable needed)

Designed & Prepared by Customer

Each Arm: ~\$100

Three Arms: ~\$335

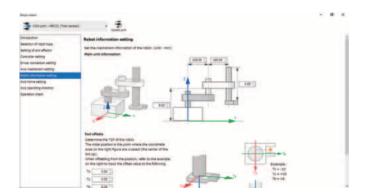



End Effector

Assembly Procedure

Required time: 1 day

When assembling, we recommend starting from the base and installing in sequence toward the end effector.


2 to 6 are tightened with screws after establishing accuracy with positioning pins

Setup

MRC01/MRC Studio

Required time: 30 minutes

- Connect MRC01 to the robot and launch MRC Studio
- Follow the on-screen instructions to "Select an item" or "Enter arm length"

Easy setup following the guide. Intuitive operation following the illustrations.

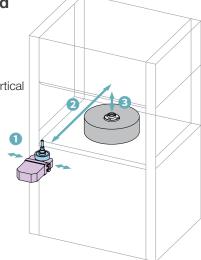
Operation Check

Unit Test

Confirm each movement to be achieved.

- Can loads be gripped?
- Can it reach the transportation position?
- Can it raise and lower?

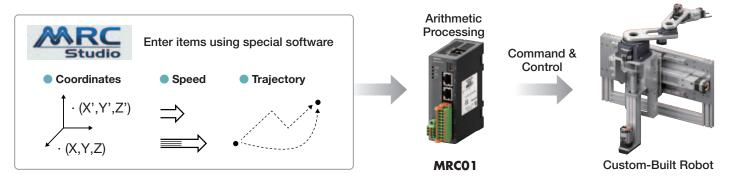
Integration Test


Combine each movement and confirm that there are no problems with the sequence of movements.

System Test

Connect to the PLC and confirm that the equipment operates without any problems.

Movements Required

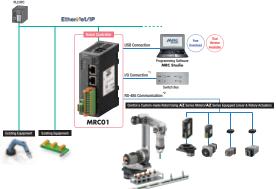

- Load gripping
- 2 Carrying in and out
- 3 Removal/attachment by vertical movement


The Features of MRC01

The arithmetic processing, operation program creation, and commands necessary for robot control can be accomplished with a single unit

Various knowledge about "Networks", "Ladder programs", and "Kinematics operations" is needed to run custom-built robots. By utilizing the robot controller **MRC01**, custom-built robots can be implemented even without robot control experience.

Simple Programming


- Select the action needed from a wide variety of commands
- No ladder program knowledge required
- Signal input standby and signal output can also be set using MRC01

Compatible with Multiple Robot Types

Select the robot type best suited to the task at hand

Linking with Host Device Possible

- Operation commands to the robot can be sent directly via EtherNet/IP
- Direct I/O operation without the use of a PLC is possible

Synchronous Control of Various Movements

- Connect and control products equipped with the AZ Series
- Linear motion, rotation, and end effectors are controlled with a single unit

Visit www.orientalmotor.com